剑指 Offer 10- II. 青蛙跳台阶问题
记忆化递归
class Solution {
private int[] memo;
public int numWays(int n) {
// f0=1;//0
// f1=1;
// f2=f1+f0;//1
// f3=f2+f1;
// f4=f2+f3;
memo = new int[n + 1];
Arrays.fill(memo, -1);
return jump(n);
}
private int jump(int n) {
if (memo[n] != -1) {
return memo[n];
}//用到缓存
if (n == 1 || n == 0) {
return 1;
}
memo[n] = (jump(n - 1) + jump(n - 2)) % 1000_000_007;
return memo[n];
}
}
时间复杂度 O(n),空间复杂度 O(n)。
动态规划 1
//动态规划
public int numWays(int n) {
if (n == 0 || n == 1) {
return 1;
}
int[] dp = new int[n + 1];
dp[1] = 1;
dp[2] = 2;
for (int i = 3; i <= n; i++) {
dp[i] = (dp[i - 2] + dp[i - 1]) % 1000_000_007;
}
return dp[n];
}
时间复杂度 O(n),空间复杂度 O(n)。
https://leetcode-cn.com/problems/qing-wa-tiao-tai-jie-wen-ti-lcof/solution/mian-shi-ti-10-ii-qing-wa-tiao-tai-jie-wen-ti-dong/
动态规划 2
public int numWays(int n) {
if (n == 0 || n == 1) {
return 1;
}
int pre = 1, cur = 2;
for (int i = 3; i <= n; i++) {
int tmp = (pre + cur) % 1000_000_007;
pre = cur;
cur = tmp;
}
return cur;
}
O(1)空间复杂度的动态规划。