204. 计数质数
难度简单
统计所有小于非负整数 *n
*的质数的数量。
示例 1:
输入:n = 10
输出:4
解释:小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。
示例 2:
输入:n = 0
输出:0
示例 3:
输入:n = 1
输出:0
暴力
class Solution {
public int countPrimes(int n) {
int ans = 0;
for (int i = 2; i < n; ++i) {
ans += isPrime(i) ? 1 : 0;
}
return ans;
}
public boolean isPrime(int x) {
for (int i = 2; i * i <= x; ++i) {
if (x % i == 0) {
return false;
}
}
return true;
}
// 作者:LeetCode-Solution
// 链接:https://leetcode-cn.com/problems/count-primes/solution/ji-shu-zhi-shu-by-leetcode-solution/
}
超时
质数的定义:在大于 1 的自然数中,除了 1 和它本身以外不再有其他因数的自然数。因此对于每个数
x,我们可以从小到大枚举 [2,x−1] 中的每个数 y,判断 y 是否为 x 的因数。但这样判断一个数是否为质数的时间复杂度最差情况下会到 O(n),无法通过所有测试数据。
考虑到如果 y 是 x 的因数,那么 x/y 也必然是 x 的因数,因此我们只要校验 y 或者 x/y 即可。而如果我们每次选择校验两者中的较小数,则不难发现较小数一定落在 [2, 根号下 x ] 的区间中,因此我们只需要枚举
其中的所有数即可,这样单次检查的时间复杂度从 O(n) 降低至了 O( 跟号下 n )。
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/count-primes/solution/ji-shu-zhi-shu-by-leetcode-solution/
class Solution {
public int countPrimes(int n) {
int[] isPrime = new int[n];
Arrays.fill(isPrime, 1);
int ans = 0;
for (int i = 2; i < n; ++i) {
if (isPrime[i] == 1) {
ans += 1;
if ((long) i * i < n) {//防止下标越界
for (int j = i * i;j < n; j+=i) { //j += i;j++
isPrime[j] = 0;
}
}
}
}
return ans;
}
// 作者:LeetCode-Solution
// 链接:https://leetcode-cn.com/problems/count-primes/solution/ji-shu-zhi-shu-by-leetcode-solution/
}
埃氏筛
枚举没有考虑到数与数的关联性,因此难以再继续优化时间复杂度。接下来我们介绍一个常见的算法,该算法由希腊数学家厄拉多塞(Eratosthenes)提出,称为厄拉多塞筛法,简称埃氏筛。
我们考虑这样一个事实:如果 x 是质数,那么大于 x 的 x 的倍数 2x,3x,… 一定不是质数,因此我们可以从这里入手。
我们设 isPrime[i] 表示数 i 是不是质数,如果是质数则为 1,否则为 0。从小到大遍历每个数,如果这个数为质数,则将其所有的倍数都标记为合数(除了该质数本身),即 0,这样在运行结束的时候我们即能知道质数的个数。
这种方法的正确性是比较显然的:这种方法显然不会将质数标记成合数;另一方面,当从小到大遍历到数 x 时,倘若它是合数,则它一定是某个小于 x 的质数 y 的整数倍,故根据此方法的步骤,我们在遍历到 y 时,就一定会在此时将 x 标记为 isPrime[x]=0。因此,这种方法也不会将合数标记为质数。
当然这里还可以继续优化,对于一个质数 x,如果按上文说的我们从 2x 开始标记其实是冗余的,应该直接从
x⋅x 开始标记,因为 2x,3x,… 这些数一定在 x 之前就被其他数的倍数标记过了,例如 2 的所有倍数,3 的所有倍数等。
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/count-primes/solution/ji-shu-zhi-shu-by-leetcode-solution/