122. 买卖股票的最佳时机 II
难度简单1108
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = **4 **。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
public int maxProfit(int[] prices) {
int n = prices.length;
int[][] dp = new int[n][2];
dp[0][0] = 0;
dp[0][1] = -prices[0];
for (int i = 1; i < n; ++i) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
}
return dp[n - 1][0];
}
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-ii/solution/mai-mai-gu-piao-de-zui-jia-shi-ji-ii-by-leetcode-s/
优化
public int maxProfit(int[] prices) {
int n = prices.length;
int dp0 = 0, dp1 = -prices[0];
for (int i = 1; i < n; ++i) {
int newDp0 = Math.max(dp0, dp1 + prices[i]);
int newDp1 = Math.max(dp1, dp0 - prices[i]);
dp0 = newDp0;
dp1 = newDp1;
}
return dp0;
}
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-ii/solution/mai-mai-gu-piao-de-zui-jia-shi-ji-ii-by-leetcode-s/
public int maxProfit(int[] prices) {
int ans = 0;
int n = prices.length;
for (int i = 1; i < n; ++i) {
ans += Math.max(0, prices[i] - prices[i - 1]);
}
return ans;
}
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-ii/solution/mai-mai-gu-piao-de-zui-jia-shi-ji-ii-by-leetcode-s/
解析
优化易懂版
public int maxProfit(int[] prices) {
int len = prices.length;
if (len < 2) {
return 0;
}
int res = 0;
for (int i = 1; i < len; i++) {
int diff = prices[i] - prices[i - 1];
if (diff > 0) {
res += diff;
}
}
return res;
}
作者:liweiwei1419
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-ii/solution/tan-xin-suan-fa-by-liweiwei1419-2/
解析
贪心算法 在每一步总是做出在当前看来最好的选择。
「贪心算法」 和 「动态规划」、「回溯搜索」 算法一样,完成一件事情,是 分步决策 的;
「贪心算法」 在每一步总是做出在当前看来最好的选择,我是这样理解 「最好」 这两个字的意思:
「最好」 的意思往往根据题目而来,可能是 「最小」,也可能是 「最大」;
贪心算法和动态规划相比,它既不看前面(也就是说它不需要从前面的状态转移过来),也不看后面(无后效性,后面的选择不会对前面的选择有影响),因此贪心算法时间复杂度一般是线性的,空间复杂度是常数级别的;
这道题 「贪心」 的地方在于,对于 「今天的股价 - 昨天的股价」,得到的结果有 3 种可能:① 正数,
② 0,③ 负数。贪心算法的决策是: 只加正数 。
作者:liweiwei1419