912. 排序数组
难度中等
给你一个整数数组 nums
,请你将该数组升序排列。
示例 1:
输入:nums = [5,2,3,1]
输出:[1,2,3,5]
示例 2:
输入:nums = [5,1,1,2,0,0]
输出:[0,0,1,1,2,5]
选择排序
每一轮选择最小元素交换到未排定部分的开头。ok
// 选择排序:每一轮选择最小元素交换到未排定部分的开头
public int[] sortArray(int[] nums) {
int len = nums.length;
// 循环不变量:[0, i) 有序,且该区间里所有元素就是最终排定的样子
for (int i = 0; i < len - 1; i++) {
// 选择区间 [i, len - 1] 里最小的元素的索引,交换到下标 i
int minIndex = i;
for (int j = i + 1; j < len; j++) {
if (nums[j] < nums[minIndex]) {
minIndex = j;//
}
}
swap(nums, i, minIndex);
}
return nums;
}
private void swap(int[] nums, int index1, int index2) {
int temp = nums[index1];
nums[index1] = nums[index2];
nums[index2] = temp;
}
####
冒泡排序
比较两个相邻的元素,将值大的元素交换到右边【超时】。
// 冒泡排序:比较两个相邻的元素,将值大的元素交换到右边。
public int[] sortArray(int[] nums) {
int len = nums.length;
for (int i = 0; i < len -1 ; i++) { // [5,2,3,1] i索引到3即length-2时 j比较的是3,1 length-2,length-1.
// 先默认数组是有序的,只要发生一次交换,就必须进行下一轮比较,
// 如果在内层循环中,都没有执行一次交换操作,说明此时数组已经是升序数组
boolean sorted = true;
for (int j = 0; j < len-i-1 ; j++) {
if (nums[j] > nums[j+1]) {
swap(nums, j, j+1);
sorted = false;
}
}
if(sorted){
break;
}
}
return nums;
}
堆排序
public class Solution {
public int[] sortArray(int[] nums) {
int len = nums.length;
// 将数组整理成堆
heapify(nums);
// 循环不变量:区间 [0, i] 堆有序
for (int i = len - 1; i >= 1; ) {
// 把堆顶元素(当前最大)交换到数组末尾
swap(nums, 0, i);
// 逐步减少堆有序的部分
i--;
// 下标 0 位置下沉操作,使得区间 [0, i] 堆有序
siftDown(nums, 0, i);
}
return nums;
}
/**
* 将数组整理成堆(堆有序)
*
* @param nums
*/
private void heapify(int[] nums) {
int len = nums.length;
// 只需要从 i = (len - 1) / 2 这个位置开始逐层下移
for (int i = (len - 1) / 2; i >= 0; i--) {
siftDown(nums, i, len - 1);
}
}
/**
* @param nums
* @param k 当前下沉元素的下标
* @param end [0, end] 是 nums 的有效部分
*/
private void siftDown(int[] nums, int k, int end) {
while (2 * k + 1 <= end) {
int j = 2 * k + 1;
if (j + 1 <= end && nums[j + 1] > nums[j]) {
j++;
}
if (nums[j] > nums[k]) {
swap(nums, j, k);
} else {
break;
}
k = j;
}
}
private void swap(int[] nums, int index1, int index2) {
int temp = nums[index1];
nums[index1] = nums[index2];
nums[index2] = temp;
}
}
快排
// 快速排序 1:基本快速排序
/**
* 列表大小等于或小于该大小,将优先于 quickSort 使用插入排序
*/
private static final int INSERTION_SORT_THRESHOLD = 7;
private static final Random RANDOM = new Random();
public int[] sortArray(int[] nums) {
int len = nums.length;
quickSort(nums, 0, len - 1);
return nums;
}
private void quickSort(int[] nums, int left, int right) {
// 小区间使用插入排序
if (right - left <= INSERTION_SORT_THRESHOLD) {
insertionSort(nums, left, right);
return;
}
int pIndex = partition(nums, left, right);
quickSort(nums, left, pIndex - 1);
quickSort(nums, pIndex + 1, right);
}
/**
* 对数组 nums 的子区间 [left, right] 使用插入排序
*
* @param nums 给定数组
* @param left 左边界,能取到
* @param right 右边界,能取到
*/
private void insertionSort(int[] nums, int left, int right) {
for (int i = left + 1; i <= right; i++) {
int temp = nums[i];
int j = i;
while (j > left && nums[j - 1] > temp) {
nums[j] = nums[j - 1];
j--;
}
nums[j] = temp;
}
}
private int partition(int[] nums, int left, int right) {
int randomIndex = RANDOM.nextInt(right - left + 1) + left;
swap(nums, left, randomIndex);
// 基准值
int pivot = nums[left];
int lt = left;
// 循环不变量:
// all in [left + 1, lt] < pivot
// all in [lt + 1, i) >= pivot
for (int i = left + 1; i <= right; i++) {
if (nums[i] < pivot) {
lt++;
swap(nums, i, lt);
}
}
swap(nums, left, lt);
return lt;
}
private void swap(int[] nums, int index1, int index2) {
int temp = nums[index1];
nums[index1] = nums[index2];
nums[index2] = temp;
}
基本思路:快速排序每一次都排定一个元素(这个元素呆在了它最终应该呆的位置),然后递归地去排它左边的部分和右边的部分,依次进行下去,直到数组有序;
算法思想:分而治之(分治思想),与「归并排序」不同,「快速排序」在「分」这件事情上不想「归并排序」无脑地一分为二,而是采用了 partition 的方法(书上,和网上都有介绍,就不展开了),因此就没有「合」的过程。
实现细节(注意事项):(针对特殊测试用例:顺序数组或者逆序数组)一定要随机化选择切分元素(pivot),否则在输入数组是有序数组或者是逆序数组的时候,快速排序会变得非常慢(等同于冒泡排序或者「选择排序」);
复杂度分析:
时间复杂度:O(NlogN),这里 N 是数组的长度;
空间复杂度:O(logN),这里占用的空间主要来自递归函数的栈空间。
归并排序
// 归并排序
/**
* 列表大小等于或小于该大小,将优先于 mergeSort 使用插入排序
*/
private static final int INSERTION_SORT_THRESHOLD = 7;
public int[] sortArray(int[] nums) {
int len = nums.length;
int[] temp = new int[len];
mergeSort(nums, 0, len - 1, temp);
return nums;
}
/**
* 对数组 nums 的子区间 [left, right] 进行归并排序
*
* @param nums
* @param left
* @param right
* @param temp 用于合并两个有序数组的辅助数组,全局使用一份,避免多次创建和销毁
*/
private void mergeSort(int[] nums, int left, int right, int[] temp) {
// 小区间使用插入排序
if (right - left <= INSERTION_SORT_THRESHOLD) {
insertionSort(nums, left, right);
return;
}
int mid = left + (right - left) / 2;
// Java 里有更优的写法,在 left 和 right 都是大整数时,即使溢出,结论依然正确
// int mid = (left + right) >>> 1;
mergeSort(nums, left, mid, temp);
mergeSort(nums, mid + 1, right, temp);
// 如果数组的这个子区间本身有序,无需合并
if (nums[mid] <= nums[mid + 1]) {
return;
}
mergeOfTwoSortedArray(nums, left, mid, right, temp);
}
/**
* 对数组 arr 的子区间 [left, right] 使用插入排序
*
* @param arr 给定数组
* @param left 左边界,能取到
* @param right 右边界,能取到
*/
private void insertionSort(int[] arr, int left, int right) {
for (int i = left + 1; i <= right; i++) {
int temp = arr[i];
int j = i;
while (j > left && arr[j - 1] > temp) {
arr[j] = arr[j - 1];
j--;
}
arr[j] = temp;
}
}
/**
* 合并两个有序数组:先把值复制到临时数组,再合并回去
*
* @param nums
* @param left
* @param mid [left, mid] 有序,[mid + 1, right] 有序
* @param right
* @param temp 全局使用的临时数组
*/
private void mergeOfTwoSortedArray(int[] nums, int left, int mid, int right, int[] temp) {
System.arraycopy(nums, left, temp, left, right + 1 - left);
int i = left;
int j = mid + 1;
for (int k = left; k <= right; k++) {
if (i == mid + 1) {
nums[k] = temp[j];
j++;
} else if (j == right + 1) {
nums[k] = temp[i];
i++;
} else if (temp[i] <= temp[j]) {
// 注意写成 < 就丢失了稳定性(相同元素原来靠前的排序以后依然靠前)
nums[k] = temp[i];
i++;
} else {
// temp[i] > temp[j]
nums[k] = temp[j];
j++;
}
}
}
基本思路:借助额外空间,合并两个有序数组,得到更长的有序数组。例如:「力扣」第 88 题:合并两个有序数组。
算法思想:分而治之(分治思想)。「分而治之」思想的形象理解是「曹冲称象」、MapReduce,在一定情况下可以并行化。
个人建议:「归并排序」是理解「递归思想」的非常好的学习材料,大家可以通过理解:递归完成以后,合并两个有序数组的这一步骤,想清楚程序的执行流程。即「递归函数执行完成以后,我们还可以做点事情」。因此,「归并排序」我个人觉得非常重要,一定要掌握。
插入排序
// 插入排序:稳定排序,在接近有序的情况下,表现优异
public int[] sortArray(int[] nums) {
int len = nums.length;
// 循环不变量:将 nums[i] 插入到区间 [0, i) 使之成为有序数组
for (int i = 1; i < len; i++) {
// 先暂存这个元素,然后之前元素逐个后移,留出空位
int temp = nums[i];
int j = i;
// 注意边界 j > 0
while (j > 0 && nums[j - 1] > temp) {
nums[j] = nums[j - 1];
j--;
}
nums[j] = temp;
}
return nums;
}
优化:「将一个数字插入一个有序的数组」这一步,可以不使用逐步交换,使用先赋值给「临时变量」,然后「适当的元素」后移,空出一个位置,最后把「临时变量」赋值给这个空位的策略(就是上面那张图的意思)。编码的时候如果不小心,可能会把数组的值修改,建议多调试;
特点:「插入排序」可以提前终止内层循环(体现在 nums[j - 1] > temp 不满足时),在数组「几乎有序」的前提下,「插入排序」的时间复杂度可以达到 O(N);
由于「插入排序」在「几乎有序」的数组上表现良好,特别地,在「短数组」上的表现也很好。因为「短数组」的特点是:每个元素离它最终排定的位置都不会太远。为此,在小区间内执行排序任务的时候,可以转向使用「插入排序」。