美团点评 2020 面经汇总-算法工程师


美团点评 2020 面经汇总-算法工程师

目录

美团秋招面试…………………………………………………………………………………………………………………….1

【美团】2021 届 cv 算法实习面经…………………………………………………………………………………2 

8 月初美团北斗计划…………………………………………………………………………………………………………3

美团算法岗面经 ………………………………………………………………………………………………………………..3

美团点评北斗计划(机器学习岗) 宣讲会结束面试…………………………………………………4

美团(上海)…………………………………………………………………………………………………………………….5

美团机器学习岗完整面经………………………………………………………………………………………………..6

美团机器学习算法岗北京现场三面凉经……………………………………………………………………….7

美团机器学习/数据挖掘一二面面经………………………………………………………………………………8

美团 配送 算法岗 面经………………………………………………………………………………………………….9

美团秋招面试

作者:huasdahadi

链接:https://www.nowcoder.com/discuss/366802?type=2ℴ=3&pos=1&page=1

来源:牛客网

美团一面

自我介绍

说到 xgb,说说优点

梯度怎么用的,体现在哪里,怎么求

lr 的公式以及梯度求解

过拟合,l1,l2,分别有什么用,怎么做到的效果(特征选择和防过拟合)

场景题:一个 query,一些结果商品,怎么做点击率模型,怎么处理商家恶意点击

概率题:一个硬币,一直到一个人为正面停止,分别计算先手后手赢的概率,2/3,1/3

算法题 1:两个有序数组,求中位数

算法题 2: 翻转数组,找一个值

平面一些点,距离近的算一类,输出可以有几类(我用的 dfs,复杂度高了点)

希望复杂度降下来,怎么办,提出用树,这个树怎么用?参考 knn

美团 二面自我介绍

介绍项目

项目亮点

为什么异常检测没有异常数据训练

随机森林怎么计算特征重要性

分词方案个数:给了分词,给一个句子,有多少种分法,dfs 2^n

说动态规划方案,简单写一下代码

【美团】2021 届 cv 算法实习面经

作者:猫弟

链接:https://www.nowcoder.com/discuss/368554?type=2ℴ=3&pos=1&page=1

来源:牛客网

一面(电话面试):50min

1.对感受野的理解?例如 VGG 网络,最后一层卷积网络输出图片对于输入图片的感受野的

大小?

参考链接:https://blog.csdn.net/program_developer/article/details/80958716

ps:之前一直没有关注这个问题,以前理解的感受野都是针对上一层的,感受野就是卷积核

的尺寸。

2.神经网络中的偏置项(b)尺寸应该是什么样的?

参考链接:https://blog.csdn.net/machinerandy/article/details/79632748

ps:了解 b 的作用,但是对它的 shape 已经不太记得怎么算的了,基础知识有待加强。

3.简述 Cascade R-CNN 的提出为了解决什么问题?

为了解决提高阈值容易造成的训练数 IOU 阈值分布变化的问题—-过拟合和 mismatch

4.Resnet 为什么有效果?

参考链接:https://cloud.tencent.com/developer/news/221146

5.1*1 卷积核的作用?

升降维度;增加非线性因素

6.MTCNN 使用的损失函数?

参考链接:https://blog.csdn.net/just_sort/article/details/80898251

ps:当时不记得 MTCNN 的损失函数了,不过基于对 loss 的认识,一般分类都用交叉熵损

失,回归用 L2 LOSS(距离一般也是,关键点同理)7.如何结果过拟合的问题?

数据增强,增大数据量 / 换更大更深的网络,更好的 backbone / dropout / L1 L2 正则化/ 

early stop / BN

8.SEnet 的结构?SEnet 如何放到 Resnet 的 backbone 里?

9.算法题

阶乘后 0 的个数 leetcode 172

https://leetcode-cn.com/problems/factorial-trailing-zeroes/solution/xiang-xi-tong-su-de

si-lu-fen-xi-by-windliang-3/

ps:刷题量不够,没有做过这个题,在面试官引导下也没有完全解答清楚,有点遗憾。

8 月初美团北斗计划

作者:快淹死了啊

链接:https://www.nowcoder.com/discuss/342038?type=2ℴ=3&pos=4&page=1

来源:牛客网

秋招的开始。第一次面试,贼紧张,去的火车上把西瓜书又看了一遍。。然而还是去学习的。

看似好像挺好,北斗都面过。。实则是去学习的

主要问题:

讲项目。介绍了两个简历上的项目,问了一些细节,大约二十分钟。还比较顺利。

项目里用到了 XGBoost,问了一些相关问题,损失函数、节点划分依据、并行怎么做的、和

GBDT、LightGBM 的区别和各自的优势等。。答得不好。。

LR 的损失函数写一下,极大似然和最大后验的区别?

深度学习了解吗?CNN 1*1 卷积核的作用?

最新的模型了解哪些?提了 BERT。BERT 里 Transformer 的多头 attention 是怎么做的?不知

道。。

编程题:数组的最大连续子数组和。

印象比较深的有这些。。其他忘记了。持续一个小时。之后整个秋招再也没收到来自美团的

任何消息。。。问题基本上都没答出来。。面试官人还是挺好的,临走还给说了点需要准备的

东西。。学习了。。

美团算法岗面经

作者:ddggf链接:https://www.nowcoder.com/discuss/338662?type=2ℴ=3&pos=5&page=1

来源:牛客网

一面(技术面,时长 50+min): 

1、围绕项目在问,问了一个实习项目还有一个竞赛项目;

2、写代码:写 topk 排序,以及分析时间复杂度。

二面(技术面,时长 20+min) 

1、围绕项目问,你觉得做的最好的项目是哪个,带来了哪些价值;

2、平时用的编程语言,我说了 c++和 Java; 

3、问 c++和 Java 的区别,从内存管理上说。

——————————————————————————-

—————-

重新换了一个部门

一面(技术面,时长 50+min):

1、围绕项目在问;

2、场景题:在北京,有一个配***心,5000 个配送点分布在北京各处,应该采用什么算法求

解;

3、最喜欢的智能算法是哪个,为什么

4、手写代码:1、输入一个字符串,判断其是否是“(”和“)”的一 一配对。2、合并两个排

好序的链表。

二面(技术面,时长 20+min) 

1、围绕项目问;

2、介绍他们那边的业务。

三面(HR 面,时长 10+min)

常见的 HR 问题

——————————————————————————-

—————–

总结美团的面试套路是:

1、项目问的比较清楚,所有的东西都是由简历的内容进行拓展

2、一般都会有手写代码题,所以常见的一定得刷一刷

美团点评北斗计划(机器学习岗) 宣讲会结束面试

作者:牛客杨超越-

链接:https://www.nowcoder.com/discuss/319551?type=2ℴ=3&pos=9&page=1

来源:牛客网

简述风控实习内容

风控业务上的一个知识点

简历 SMO 并行的内容

什么是对偶问题???手写!手写题识别的项目介绍

树的右视图

概率题,一根木棍随机砍两道,构成三角形的概率

有 100 万条诈骗电话黑名单,现在有个电话来了,快速判断这个电话是否在黑名单里,要求

查询 1000 条和 100 万条所消耗的时间一样(我不会了)

问了好多数学题,求我内心的阴影面积。

20190821 美团点评

一面:

简历风控项目

深挖了项目内容包括:label 哪里来的?

谱聚类

两种层次聚类的优缺点

GBDT 和 GD 的联系

深度遍历非递归

二面:

实习的风控项目特征工程怎么做的

推导 XGB

RF 和 GBDT 的区别

归并排序

三面(部门老板面):

纯业务面(我不是一个校招生吗?)

概率题:某村庄的的习惯是一直生到男生为止,求村庄的男女比例

美团(上海)

作者:16huakai

链接:https://www.nowcoder.com/discuss/290749?type=2ℴ=3&pos=13&page=1

来源:牛客网

(机器学习方向)

一面:46 分钟

1.自我介绍

2.围绕简历实习问:场景,方法,指标,样本,……(20 分钟)

3.随便说一个算法(说的决策树——特征选择方法区别,分类和回归,)

4.大数据 and 分布式

5.auc 的作用6.编程题:一维数组[1,n],n 可以认为正无穷,然后输入无数个区间[a,b],保证 b>a,求所有区

间长度。

(按照 a 对区间排序)

7.最后一个智力题:扔鸡蛋问题。

二面:1 小时 10 分钟

1.自我介绍

2.直接一个场景题:怎么做搜索中的联想页——方案设计,怎么落地,什么指标。。。(怎么得

到字典树)

3.然后又一个场景题:怎么做美团 app 的猜你喜欢,只能用 LR 模型,(特征,那些特征,怎

么获取,怎么处理)

特征怎么离散化、怎么设计整个逻辑,在线怎么获取用户的特征…

4.然后实习项目:模型,场景,(介绍优缺点,cnn 作用,esim 模型的优缺点),point wise 

和 pair wise 的优缺点

5.GBDT 怎么处理类别特征,例如 ID 特征

6.word embedding 的 api 原理

7.最后一个智力题:一个无穷的数列,一直输入,直到收到停止的命令为止,怎么使得返回

一个数的概率是

1/n,因为是无穷的,不能存数字(蓄水池算法)

HR 面:20 分钟

1.大学做过自己觉得有成就的事情?

2.怎么学习课外知识?

3.比赛经历?实习经历?

4.阿里和美团怎么选择?为什么还投递美团?

5.能不能承受大的工作压力?

美团机器学习岗完整面经

作者:猪突猛进

链接:https://www.nowcoder.com/discuss/287277?type=2ℴ=3&pos=14&page=1

来源:牛客网

共三面(一面 1 小时、二面 1 小时、三面 30 分钟)

一面

全排列

问项目,查得很细,所有的点都问了一遍,基本上围绕简历来问的质疑了一下交互时间取值

使用深度模型的话为啥使用 deepfm 而不使用 wide&deep 之类的

二面

问我为什么坚定的想做推荐?

问了 precision recall,问了 bagging boosting

xgboost 和 lightgbm 之间区别

场景题,如果输入某关键词进行搜索 对于返回的结果可以从哪些方面进行设计?这个是开

放题大家见仁见智

再有就是问了一些基本的分类指标 AUC/F1score/Precision/Recall/MAP/NDCG 等 等

( MAP:https://blog.csdn.net/u014203453/article/details/77598997, NDCG: 

https://blog.csdn.net/u010670689/article/details/73196054

以及 usercf itemcf 相应的知识(https://blog.csdn.net/xmu_jupiter/article/details/48029165

再有就是 DNN 与 DeepFM 之间的区别

Wide&Deep 与 DeepFM 之间的区别

问了 auc 的时间复杂度

连续特征如何进行离散化?

最近新看了哪些前沿算法

三面

自我介绍,问专业

最打动面试官的项目亮点?

有没有得到一些方法论上的东西?(说了特征构建上的心得)

介绍了一下 Fß score(precision/recall 的 tradeoff)

质疑了一下训练数据时间窗口的选取

场景题,问只有 key-click 数量-order 数量,问如何进行条图的推荐,设计一个指标。这个

也是见仁见智

介绍了整个部门的情况,问了一下日常工作

hr 面 9.17

就是一些基本的问题,工作城市意向,对未来职业的规划之类的,自己的优缺点等等

美团机器学习算法岗北京现场三面凉经

作者:wxzzzz

链接:https://www.nowcoder.com/discuss/284006?type=2ℴ=3&pos=15&page=1

来源:牛客网

一面技术面:

简单自我介绍+介绍项目+机器学习相关算法介绍、理解,例如:逻辑回归、支持向量机,神

经网络,欠拟合和过拟合,GBDT、XGB 等手撕代码:求 2^N 次方(当时想了用移位),求 N 的阶乘有多少个 0(这个简单,N // 5)

开放性问题,怎么处理特征、怎么选择模型

平时用什么开发,python 或者 C++

二面技术面:

简单自我介绍+介绍项目

项目问了很多细节

智力题:一个小时平均闯红灯 5 次,问一个小时闯红灯 6 次的概率,这个就泊松分布。一家

人两个孩子,已知一个是女儿,问两个都是女儿的概率,这个简单,条件概率而已

代码题:区间合并,这个按区间左边界排序,再一次遍历就可以了

三面 leader 面:

中间被鸽了两次

简单自我介绍+介绍项目

项目问了很多细节

代码题:判断一个链表是否有环,这个快慢指针就可以解决。

基础题:LR 和 SVM 的区别,SVM 核函数如何选择

顺便聊了一下意向和未来规划

感觉跟面试官谈笑风生,最后把我挂了,我也是无语。

美团机器学习/数据挖掘一二面面经

作者:雲水謡

链接:https://www.nowcoder.com/discuss/270180?type=2ℴ=3&pos=16&page=1

来源:牛客网

一面:

1. 五年以内的职业规划

2. 介绍最有成就感的项目(图像、CV项目)

3. 分条概括项目的难点,怎么尝试解决的

4. 解决过拟合的方法有哪些

5. dropout的随机失活因子以及怎么反向传播

6. 池化层如何反向传播

7. BN底层如何计算,手撕BN,BN在训练、测试阶段的计算有什么区别

8. SVM的松弛因子作用

9. 树模型节点划分的依据,如何理解基尼系数的概念

10.并发和并行的区别

11.第一范式、第二范式

12.手撕2的N次方

二面:1.聊项目(图像、CV项目),难点怎么解决的

2. ResNet为什么能够保证很深的网络具备不错的效果?

3. 问一些一面聊过的DL、ML基础知识

4. GAN、LSTM、GRU、NLP相关的大概聊聊,主要我是图像背景,文本、推荐

相关的不咋懂,聊不下去

5. XGBoost、GBDT

6. 手撕如何使用rand7()生成rand10()

7. 个人的规划,是不是一定要做图像相关的?

8. 平时如何进行技术的学习、积累,用哪些途径?

9. 在实验室的出勤作息,每天除实验室工作外,个人进行自我技术学习、提升的有效时间

能够保证多少?

美团 配送 算法岗 面经

作者:超级小玄

链接:https://www.nowcoder.com/discuss/264276?type=2ℴ=3&pos=20&page=1

来源:牛客网

一面(70min)

1 介绍一下你的研究方向

2 这两个项目讲一下

3 实习说一下

4 我觉得很适合,那我们做两道题吧,最长递增序列

5 五个外卖,先取后送,一共十个点,有多少种排列组合情况

6 java 里 static 意味着什么

7 final 意味着什么,final 标记的类实体中属性值是否可以修改?

8 你还有什么问题吗

二面(75min)

1 介绍一下你的研究方向

2 如何看待 simulation 与实际情况的 gap

3 你觉得外卖配送难点在哪

4 压单合包问题你有什么想法

5 记不清了,主要围绕他们组的合包问题在讨论

三面(80min)

1 介绍下研究方向

2 讲一下你这篇论文

3 你的这种方法怎么和高级方法结合,你这个 1 秒内求得解,但我现在只要求五秒,剩下 4

秒你做什么

4 做一个优化项目你的套路是什么,经验是什么5 你觉得项目中最大的问题是什么

6 围绕运筹学和配送里面的订单骑手匹配问题聊了很久

7 你还有什么问题?

8 加一下你微信吧?

HR 面(30min) 

1 自我介绍

2 实习经历说一下

3 说一下你最拿得出手的事

4 说下你在项目中遇到的最大困难,你怎么解决的,学到了什么

5 导师怎么评价你

6 还跟哪几个公司再谈

7 意向工作地点

8 能来实习吗?何时毕业

技术加面(60min)

1 自我介绍

2 方法详细讲一下

3 你大件仿真模型的经验和心得

4 做学术遇到的最大困难,怎么解决的

5 项目和学术结合怎么做

6 问题中的随机性怎么处理,gps 不准,天气多变?

7 你未来两年内的规划

8 怎么实现你的规划,你都准备做哪些事

9 现在还在跟哪些公司谈

10 你还有什么问题吗


文章作者:   future
版权声明:   本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 future !
 上一篇
美团点评 2020 面经汇总-Java 工程师 美团点评 2020 面经汇总-Java 工程师
美团点评 2020 面经汇总-Java 工程师 目录 美团 JAVA 一面………………………………………………………………………………………………………………………….1 新鲜校招美团面经(一面凉)………………………………………………………
2021-03-06 future
下一篇 
美团点评企业文化 美团点评企业文化
美团点评企业文化 美团的使命是“帮大家吃得更好,生活更好”。作为中国领先的生活服务电子商务平台,公司 拥有美团、大众点评、美团外卖等消费者熟知的 App,服务涵盖餐饮、外卖、打车、共享单 车、酒店旅游、电影、休闲娱乐等 200 多个品类,业
2021-03-06 future
  目录